9. Permanent is VNP-Complete, Part 1
Water subset 1. 201 - 2014
Perform (K_3) =
$$\sum_{i=1}^{n} \frac{1}{i!} X_{i:K_{i}} \in [F(X_{i}, \dots, X_{n}, e_{i}, \dots, etil)], t. U. J. N. 's primodel $\frac{1}{2}$.
 $VWP = \{(f_{n}): U_{n} \neq \dots \neq 0 = 0, \dots, 0 \in [X_{n}, \dots, X_{n}, e_{i}, \dots, etil)\}, t. U. J. N. 's primodel $\frac{1}{2}$.
 $Thm | (Valiant): PERM is VNP-complete (under $p \cdot projetims)$
 $Prop! | . PERM EVMP.$
 $Prop! | . PERM EVMP.$
 $Port uses true inverse $A = \{a_{i:j}\}, \dots, b_{i}\}$ for an inverse in $A = \{a_{i:j}\}, \dots, b_{i}\}$ for A_{i} , \dots, b_{i} is $i \in S$.
 $Port uses true index (a = ecolorial probable.$
 $So PERM_{n} = (-1)^{n} \sum_{i=1}^{m} \frac{1}{i!}(1-2e_{i})! (\prod_{i=1}^{m} \sum_{j=1}^{m} X_{i:j} \cdot e_{j})}{A_{i}A(1!)! (\prod_{i=1}^{m} \sum_{j=1}^{m} X_{i:j} \cdot y)} (M_{i} = X_{i} \cdot e_{i})$
 $Port 2: Let E(Y_{n}, \dots, Y_{m})$ be a projection formula and converses $(A = e_{i})$.
 $Then $\sum_{i=1}^{m} E(e_{i}, \dots, e_{m}) \in I$ for B_{i} then it is such that for $(e_{m}, \dots, e_{m}) \in I_{0}$, f_{i}^{m} .
 $Port 2: Let E(Y_{n}, \dots, Y_{m})$ be a projection formula and converses $(A = e_{i})$.
 $Then $\sum_{i=1}^{m} E(e_{i}, \dots, e_{m}) \in I_{1}$ for $(E_{i}, \dots, E_{m}) \in I_{0}$, $f_{i}^{m} = f_{i}$, $f_{i} \in S_{i}$, $f_$$$$$$$$

Define
$$VVP_{e} = \{(f_{n}): \stackrel{W_{n}}{=} f_{n} = \sum_{i=1}^{n} d_{i} (f_{i}, \dots, f_{e}, \dots, f_{ein}), \quad the same is primeded 3
(2) \in VP_{e} (2) \in VP_{e} (2) \in VNP_{e} (2) \in$$

•

-

ŀ

.

Then
$$(1) = 15$$
 hold for 9: by the bidinetic hypolosis.
3. Now support $g = CuV$, $dg(M=0)$, $dg(V) = 0$. Then $e = 0, +0$.
For $1 = 1, \cdots, d = 0$; $1 = 2 : C \cdot V \cdot V(+1)$.
To see this is well-defined, note $1 \le 4 = 0$; $1 \le 4 = 0$; $1 \le 4 = 0$, $1 \le 4 = 0$; $1 \le 4 \le 0$; $1 \le 0$

Claim:
$$C = \sum_{i=1}^{n} w(T)$$
 as a polynomial.
Tept(C)
PL: we pose the claim by induction. When C is a mode, the claim is obvious.
If $C=C_1 + C_2$, then $C: C+C_2 = \sum_{i=1}^{n} w(T) + \sum_{i=1}^{n} w(T)$.
Tept(C)
If $C=C_1 \times C_2$, then $C: C+C_2 = \sum_{i=1}^{n} w(T)$.
Tept(C)
If $C=C_1 \times C_2$, then $(c:C_1 \times C_2 = w(T)) \cdot (\sum_{i=p}^{n} w(T))$.
 $= \sum_{i=1}^{n} w(T) \cdot (\sum_{i=1}^{n} \sum_{i=1}^{n} w(T)) \cdot (\sum_{i=p}^{n} w(T)) \cdot (\sum_{i=p}^{n} w(T))$.
 $= \sum_{i=1}^{n} w(T) \cdot (\sum_{i=1}^{n} \sum_{i=1}^{n} w(T)) \cdot (\sum_{i=p}^{n} w(T)) \cdot (\sum_{i=p}^{n} w(T)) \cdot (\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} w(T)) \cdot$

$$\int dr \ Orang gate j selected by a, it j is an addition gate,
+ then (ing) is related by a for party one duble hoof g,
and it g is a multiplicatin gate, then (ing) is soleled by a
for all children h of g.
Turn to into an algebraic double Fr in [Xe] $e \in E$
sub that the agrees with to an $\{0,1\}^E$.
Let $F = F_1 \cdot T_1 \quad (X(u,v) \cdot W(u) + 1 - X(u,v))$
taket + u
u is an improve
 $-1 \quad (int) \quad X(u,v) = 1$
 $-1 \quad (int) \quad X(u,v) = 0$
Then F is as desired (anose to be anode, in which are we just
 $e^{-(u,v)} \quad (int) \quad ($$$